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Flow induced by a body moving near a plane wall is analysed on the assumption that 
the normal distance from the wall of every point of the body is small compared to  the 
body length. The flow is irrotational except for the vortex sheet representing the 
wake. The gap-flow problem in the case of unsteady motion is reduced to a nonlinear 
first-order ordinary differential equation in the time variable. I n  the special case of 
steady flow, some known results are recovered and generalized. As an illustration of 
the unsteady theory, the problem is solved of a flat plate falling toward the ground 
under its own weight, while moving forward a t  uniform speed. 

1. Introduction 
Fluid-dynamic problems involving bodies moving close to  walls are of interest in 

many different contexts, and there is a considerable literature dealing with such 
problems. The present paper concerns itself with those ground-effect phenomena 
which can be approximated as inviscid (high Reynolds number) and incompressible 
(low Mach number). 

The classical inviscid problem is of course the aerodynamics of wings near the 
ground, and indeed the present work has its most obvious application in that area. The 
regime of interest in the present paper is, however, that  of very small clearances to  the 
ground. The early work on aerodynamic ground effect (e.g. as surveyed by Pistolesi 
1937), views all effects of the ground as small perturbations to the infinite-fluid flow 
about the wing. The formal requirement for this to  be valid is that the clearance 
between body and ground be large compared to  all length scales of the body. 

An intermediate regime, in which the flow is qualitatively similar to that in an 
infinite fluid, but where ground effects are ‘ O( I)’ perturbations, is when the clearance 
is comparable to some body dimension, For example (e.g. Bagley 1961; Tuck & 
Newman 1974), the problem of a thin airfoil in steady ground effect a t  clearances 
comparable to  the chord (thus large compared to  the thickness and/or camber), leads 
to a singular integral equation for the bound vorticity, whose kernel reduces to the 
classical lifting-surface kernel for an unbounded fluid, as the clearance/chord ratio 
tends to infinity. On the other hand, if one lets the clearance/chord ratio tend to zero 
in such a theory, the integral equation ‘collapses’, and one obtains an almost-trivial 
explicit result for the loading, in terms of the local distance from the wall. 

The small-gap regime is defined formally as that  in which the clearance is small 
compared to the horizontal length scale. For non-thin bodies (e.g. automobiles), a 
general approach to  this class of problem is outlined by Tuck (1975); however, as 
with any bluff-body flow, little progress can be made without introducing empirical 
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assumptions regarding the wake. We assume here, that, in addition, the body is thin, 
i.e. that not only its lower surface, but also its upper surface, is close to the wall. 

Some literature does exist on this small-gap problem. For example, Strand, Royce 
& Fujita (1962) and others (see references in Gallington & Miller 1970) have noted the 
‘hydraulic ’ or channel-flow character of the tightly-constrained flow between the 
body and the wall. Widnall & Barrows (1970) provided a complete asymptotic solution 
for the steady-flow case, assuming in addition that the thickness and camber (and 
‘angle of attack times chord’) are small compared to  the clearance. The present paper 
can be considered as an extension of the work of Widnall & Barrows to include 
‘nonlinear ’ (thickness, etc., comparable to clearance) and unsteady effects. Un- 
steadiness due to ground irregularity was included in the linear theory by Barrows 
& Widnall (1 970). 

Although the potential applications are to very practical problems, such as large 
aircraft in ground effect, modern racing cars, tracked ground transportation vehicles 
(Barrows 1971), and ship manoeuvring in shallow water near banks (Norrbin 1974; 
Tuck 1978a), in the present paper we give only simplified illustrations, involving 
two-dimensional flow, and specialized geometry and motions. The small-clearance 
assumption implies that  a two-dimensional flow becomes one-dimensional in the gap, 
and is thus describable by the one-dimensional continuity equation. For a given body 
under-surface, this equation is a second-order ordinary differential equation for the 
velocity potential, as a function of the horizontal co-ordinate x along the wall, which 
can be solved explicitly. Two boundary conditions are needed, and these must come 
from matching with the outer flow passing over the top of the body. I n  the appendix, 
we show that the proper conditions are continuity of velocity potential a t  the leading 
edge, and (for bodies without stern appendages) of pressure a t  the trailing edge. 

When these conditions are applied in unsteady flow to determine the net flux 
exiting from the gap a t  the stern, the result is a nonlinear ordinary differentia1 equation 
of the first order with respect to  time. I n  the special case of steady flow, the appropriate 
solution of this equation is vanishing flux, in a frame of reference fixed in the fluid 
a t  infinity. That is, in a frame of reference fixed in the body, the trailing-edge velocity 
is equal to the free-stream velocity. The present theory then reduces to a nonlinear 
equivalent of that  of Widnall & Barrows (1970). Some nonlinear consequences for the 
steady lift force are discussed in § 4. 

The unsteady problem solved in 3 5 is free fall under its own weight of a flat plate 
toward a plane wall, combined with a horizontal motion a t  constant speed U .  For 
U = 0, a symmetric solution was presented by Yih (1974), in which the plate never 
actually hits the wall, but ultimately approaches it with an exponential decay of 
height with time. We find a similar result, but only for U above a certain critical value. 
For lower values of U ,  the approach to the wall is still gentle, but there is impact a t  
a finite time, with a cubic decay of height with time near impact. It should be noted, 
however, that we retain the asymmetry between leading and trailing edges even when 
U is small, and Yih’s symmetric solution is likely to  be more realistic for small U .  
We also assume that the angle of attack remains zero for all time, and (at least when 
U + 0 )  this makes the application to problems such as stacking of glass plates (Yih 
1974) or the ‘sliding of sheets of paper’ illustration in G. I .  Taylor‘s cine film (1967) 
not yet complete. It would appear, however, that there is no need to invoke viscous 
effects to explain ;I number of air-lubrication phenomena. 
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2. Problem formulation 
We assume two-dimensional irrotational flow of an incompressible fluid, generated 

by movement of a thin airfoil-like body as sketched in figure 1 ,  with upper surface 
y = fv, and lower surface y = f L ,  i.e. occupying the region 

(2.1) 

The leading edge or bow is a t  x = xB, and the trailing edge or stern a t  x = x,. The body 
has length 

which can in the most general case depend on time, but is normally considered to be 
const ant. 

f L ( X ,  t )  < Y < f&, t ) )  < x < 

21 = XB-xs) (2.2) 

The body is everywhere close to a plane boundary a t  y = 0, i.e. 

f L J U  = O ( 4 ,  (2.3) 

where E is a small parameter. This also requires the body to  be thin, as in the thin- 
airfoil theory. However, we do not assume that its thickness fu - f L  is small compared 
to  the wall separation, e.g. to  the minimum value of fL. 

Our task is to  solve Laplace’s equation 

$xx + $ya, = 0 (2.4) 

for the velocity potential $(x, y, t ) ,  subject to suitable boundary conditions. At 
infinity we have a state of rest, i.e. 

$, V$+O as x ,  y+m. (2.5) 

The wall y = 0 is impermeable, i.e. 
$&, 0, t )  = 0. 

The boundary condition on the moving body surface, 

= ft + $xfw (2.7) 

applies both with f = f L  and f = fu. Note that when we allow E to become small, we 
shall not only assume that f = O(e), but also that fx, ft = O(c) .  

Finally we must use an appropriate wake and Kutt,a condition. The trailing edge 
x = xs is assumed to  shed vortices which remain behind the body in a vortex sheet, 
with equation 

?/ = f , ,-CX, % (2.8) 
2-2 
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the function f w ( x ,  t )  being unknown. The kinematic boundary condition across this 
surface is given again by (2.7), with f = f w .  The dynamic condition is continuity of 
pressure across the sheet. Thus if p(x ,  y, t )  is the excess of pressure over the value at 
infinity, then from Bernoulli’s equation 

P = - P ( h + $ $ : + i $ g )  (2.9) 

(2.10) 

Equation (2.10) holds in the wake for x > xs(t) and also holds at the trailing edge 
x = xs(t), where i t  defines the Kutta condition, and ultimately determines the circula- 
tion about the body. 

I n  the following section, the approximate solution in the most important region 
near the wall is developed using intuitive arguments. A complete systematic asymp- 
totic expansion procedure is provided in the appendix. 

everywhere in the fluid. The dynamic boundary condition on the wake is 

PCX,fw + 0, t )  = P(.,f,. - 0, t ) .  

3. One-dimensional theory 

& wake ’ region G & W defined by 
We now assume that in the limit as e+  0, $ = O ( E )  except 

0 < y < f ( x ,  t ) ,  x > XB(t), 
where 

in the near-wall ‘gap 

(3.1) 

(3.2) 

I n  the region G & W ,  there is a flow of a magnitude which does not tend to  zero as 
e+ 0. If we are interested only in leading-order estimates of forces, etc., we can there- 
fore concentrate attention on the flow in region G & W ,  assuming in effect that  $ = 0 
when we are outside G & W .  A formal justification for this assumption is provided 
in appendix A by matching techniques 

I n  fact, the flow in G & W is classical one-dimensional or channel flow, in which 
the fluid moves predominantly in the x direction, parallel to the wall. For example 
it is consistent with this approximation to use the Taylor expansion 

$ = @(x, 0, t )  - &&x,(x, 0, t )  + . . *, (3.3) 

which guarantees satisfaction of (2.4) and (2.6) and satisfies (2.7) if 

This equation is derived in a more-formal manner in appendix A. Alternatively, we 
may recognize (3.4) as the ordinary one-dimensional continuity equation, expressing 
conservation of mass in a flow with dominant velocity $x(x, 0, t ) ,  in a channel of width 
f which varies both in space and time. From now on, we write $(x, t )  for $(x,  0, t ) .  

One integration of (3.4) with respect to x gives 
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is the (so-far unknown) net, flux through the gap at  the stern. Our primary task is to 
determine this quantity q(t) .  A further integration gives the potential # itself. In 
performing this integration step, we match with the exterior flow Q = 0 outside 
G & W ,  by applying the boundary condition 

+(XB(t ) ,  t )  = 0, (3.7) 

at the leading edge x = xB(t). This is justified formally in appendix A. Thus 

and 

i.e. 

(3.10) 

For a given body lower surface f = f L ,  (3.8) determines the flow in the gap region 
G beneath the body, providing we can find p(t). In order to find p(t), we must make 
use of the Kutta condition (2.10) at the trailing edge x = xs(t). Now in G & W ,  we can 
simplify the Bernoulli equation (2.9) since #u = O(s) ,  and hence the pressure in G & W 
is given by 

P(X, t )  = - - P [ # t ( X ,  t )  + i(#x(x,  t))21 + O(4. (3.11) 

Since 4 = O(s)  outside G & W ,  and hence p = O ( E ) ,  continuity of p across the wake 
simply requires that the O(1) dominant part ofp vanish in W ,  i.e. 

#&, t )  + i (Qx(x,  t))2 = 0, x > xs(t). (3.12) 

A more-formal derivation of (3.12) is given in appendix A. Equation (3.12) is a first- 
order nonlinear partial differential equation to determine the flow in the wake region 
W ,  equivalent to the homogeneous Euler equation 

au au 
at ax 
-+u- = 0 (3.13) 

for the velocity u = $z. Once (3.12) or (3.13) is solved, we have another first-order 
equation, (3.4), to solve for the unknown wake boundary y = fw(x ,  t ) .  However, it is 
not necessary to go this far, if we are primarily interested only in the flowbeneath 
the body. 

SO long as the gap G and wake FV regions are essentially continuous with each other 
(i.e. not interrupted by an edge region where #u is significant, exceeding O ( E ) ) ,  equation 
(3.12) can also be applied 'a t '  x = xs:s(t), and is the required Kutta condition to deter- 
mine the trailing-edge flux q(t) .  If the under-surface at  the trailing edge is 'shaped', 
or if there is an appendage such as a rudder a t  a finite angle of attack, no such con- 
clusion can be drawn; some such extensions of the present theory are considered in 
Tuck (1979). 
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On substitution of the representation (3.8) for the velocity potential $ into the 
Kutta condition (3.12) a t  x = xs(t), we obtain the nodinear first-order ordinary 
differential equation 

A(xs,t)a+A(xs:,,t)q+ B(xs>t)+2f2(zs,t) q2 = 0. (3.14) 

Note that the coefficients A, B are obtained by differentiating the corresponding 
expressions (3.9), (3.10) with respect to time a t  fixed x, and then setting x = xs(t); 
in particular A(xs, t )  + d[A(x, ,  t)]/dt. The differential equation (3.14) must be solved 
in any special case, subject to a suitable initial condition on the flux q(t) at t = 0. 

4. Steady flow 
An important special case is whenf,(x, t )  = f (x  + Ut), 1x + Utl < 1. That is, the rigid 

body with lower surface y = f (x+ U t )  is moving with constant velocity U in the 
negative x direction. Although it is somewhat easier to solve this problem directly 
in a moving co-ordinate system, in whbh the body appears fixed in a uniform stream 
of magnitude U in the + x  direction, we provide the solution here by specialization 
of the general unsteady results. 

We observe that 

and 

and find that B = 0 a t  the stern. Hence the differential equation (3.14) possesses the 
solution q = 0, which simply means that free-stream conditions prevail a t  the stern. 
Equation (3.8) then shows that (4.2) is in fact an expression for the velocity potential 
$(x, t )  = R(x, t )  everywhere in the gap, from which we can compute (using (3.1 1)) the 

(4.3) 

Since we have assumed that p = O(e)  on the upper surface of the body, the net 
upward force per unit span is 

where 

is the gap thickness, scaled with respect to that a t  the trailing edge, and a bar denotes 
a mean value over the length of the body, i.e. 

The result (4.4) is equivalent to one obtained by Strand, Royce & Fujita (1962). 
It is instructive to compare the above lift force with that obtained by use of the 

Kutta-Joukowski theorem, which applies only in unbounded media. Thus (since 4 
is continuous elsewhere), the net circulation r around the body is generated entirely 
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by the jump in the velocity potential #, from its value Q(xs, t )  immediately below the 
trailing edge, to its O ( E )  value immediately above it. Hence, to leading order, 

= $(xs,t)  

Thus the Kutta-Joukowski lift is 

(4.7) 

I n  cases where the body’s thickness or camber is small compared to the wall separa- 
tion, the Kutta-Joukowski theorem becomes asymptotically valid, and FK -+ FL, 

since in that limit ( fo(x) -N f o ( l ) )  

1 -F+ 2(  1 -F) 

That is, 
+ 2(X - 1). 

FL-+ZJIU~Z(X- 1),  

(4.9) 

(4.10) 

which depends only on the net area lying between the lower surface of the body and 
a horizontal line through its trailing edge. 

For example, if the body is a flat plate a t  an angle of attack a, then this linearized 
approximation predicts that 

FL=ipU221a - (4.11) 

The result (4.11) was found by Widnall & Barrows (1970). The full nonlinear result 
(4.4) for this case is 

(4.12) 

which is inversely proportional to the leading-edge clearance a t  fixed angle of attack. 
It is possible (Tuck 1978b) to  use the present unsteady theory t o  analyse the 

transient development of the steady flow and forces, e.g. subsequent to an impulsive 
start from a state of rest. The results indicate a significant degree of non-linearity in 
the transient flow, and in particular the approach to the steady solution is quali- 
tatively different for negative and positive angles of attack. 

(3 * 

F L = i p U 2 2 1 a (  21 ) ,  
f (1) + 21a 

5. Falling flat plate in steady horizontal motion 
We now assumefL(x, t )  = yo(t), thereby allowing an arbitrary vertical movement for 

a body with a flat undersurface that remains parallel to the ground. We assume 
uniform horizontal translation to the left a t  speed U ,  i.e. set xu(t) = - 1 - Ut,  xs(t) = + 
1 - Ut, with U constant. The velocity potential (3.8) becomes 

$ = ( X + U t + I ) U + ~ ( X + U t + z ) ( X + U t - 3 l ) p ,  (5.1) 
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where 
u = q/yo  = @J- U t + l , t )  

P = -Yo/Yo* 
is the gap velocity a t  the stern, and 

The differential equation (3.14) becomes 

(5.3) 

2zu - 212p + uu + = 0. (5.4) 

For any given time history of vertical movement yo(t) ,  we must evaluate the quantity 
P(t), and then solve the differential equation (5.4) for u(t). 

The pressure on the plate’s under surface is given by 

- p / p  = (2+ Ut+I)zi+Q(x+ Ut+Z) (x+ Ut-31)1+ u[u+p(x+ ut-l)] 

+ Q[u + P(x + Ut - Z)]2, (5 .5 )  

and vanishes as required at the stern x+ U t  = 1, if (5.4) is satisfied. The net upward 
force is 

( 5 4  FL = -p1[212i- 3 Z 2 p + 2 U ( ~ - p l ) +  ( ~ - p l ) ~ + + Z ~ ( p + p ~ ) ]  

M = - i p l3 [u  - ID+ (U  i- u ) P -  1p2]. 

and the (bow-down) moment is 

(5.7) 

For example, consider a freely-falling plate of mass m per unit span, constrained 
against rotation. Then yo(t)  itself is determined by solving the equation of motion 

(5.9) 

Equations (5 .3 ) ,  (5.4) and (5.9) are a set of 3 coupled nonlinear first-order differential 
equations to solve for u, p and yo. 

If we define t = to as the instant a t  which the plate hits the wall, so that motion 
takes place for t -+ to, then so long as to remains finite, the final stage of the fall appears 
to be described by the estimates 

m 
21u - p p +  2uu + u2- 2( u + u)  pz+Ql”p” = -- (y 0 + 9 ) .  

P l  

and 

u = u- -+- (t- to)+O(t-to)2,  
t - 2z to [;2 ‘Q12] 

- 3 U2(t-t0) 
t - to  41 

p=- -  + O(t - t o p ,  

(5.10) 

(5.11) 

(5.12) 

for some constant c. This contrasts with the exponential approach to the waH found 
by Yih (1974). Yih solved the corresponding problem at U = 0, by making the 
empirical assumption that p = 0 at both edges of the plate. This means that vortex 
sheets must spring from both edges, there being of course no distinction between 
‘leading’ and ‘trailing’ edges if U = 0. Although the result is different, the conclusion 
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that the approach to the wall is relatively ‘gentle’ still holds. However, the present 
requirement of no rotation is rather restrictive, since the limikng bow-down moment is 

8 pZ4 
M = - -  + O( 1). 3 (t - toy  

(5.13) 

In  fact it is possible to have an exponential approach to the wall, for suficiently- 
large horizontal speed U .  Thus, the system (5.3), (5.4), (5.9) allows a solution with 
u- f  0, ,8+p0, and 

y +- ce-M -+ 0, t -+ co, (5.14) 

where Po is a positive constant determined from the quadratic equation 

- 
i.e. 

2 u1p0 + ppPf = - mg/p‘, (5.15) 

(5.16) 

This solution possesses a finite bow-up limiting moment M .  

real, i.e. if 
The exponentially-decaying solution can exist only if the square root in (5.16) is 

(5.17) 

The value of Po a t  this limiting speed Uo is one half of the value found by Yih a t  U = 0, 
and as U -+ co, the dominant (smaller Po) decaying term has Po-+ 0. The present theory 
must break down for sufficiently small U ,  and Yih’s theory appears a suitable extra- 
polation to U = 0, with the advantage of Aow symmetry about the centre of the plate. 

The above system was solved numerically for motion starting from rest a t  yo = h. 
We use a non-dimensional version of the equations, namely 

9 0  = -&07 y(O) = ‘7 

u=p+Ju-12,  4u u(0) = 0, 

where the scale for time is the time taken to fall a distance h in a vacuum, i.e. 

T = (:I*, (5.19) 

and yo is scaled with h, u and U with l /T,  /3 with 1/T, and m with p13/h. 
It appears from these computations that whenever the condition (5.17) is satisfied 

(i.e. a t  high speed U ) ,  the exponential-decay solution holds, with the smaller of the 
two values of Po in (5.16). On the other hand, if (5.17) is not satisfied (low speed U ) ,  
the body does indeed hit the ground a t  a finite time to, and to -+ 00 as U -+ U,. 

Figure 2 shows a typical set of numerical results a t  (scaled) m = 1, for various 
values of (scaled) U .  The critical scaled speed is Uo = (D), = 1.64 in this case. For 
example, we find a t  U = 1 that the body hits the ground (with zero velocity and 
acceleration as predicted by (5.12)) a t  t 2~ 3-3, whereas a t  U = 2 there is an exponential 
approach as in (5.14), with Po _N 0.63, as predicted by (5.16). The curve with U = 0 
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FIGURE 2 .  Scaled trajectories of height versus time for fall of a plate of (scaled) mass m = 1 ,  
for various (scaled) horizontal speeds U .  Arrows indicate times of impact for U = 0, 1; there 
is no impact if U > 1.64. 

has no physical significance but is included as a limiting case for small U .  Figure 2 
also shows (dashed) the parabolic free fall in a vacuum, equivalent to (scaled) m+co 
for all finite U .  Fluid-dynamic effectas always postpone the impact (sometimes for- 
ever !), and also make the impact gentle if it does occur. 

Appendix A. Formal asymptotic development 

The flow region is divided into five separate asymptotic regions as e + 0, namely: 

( 1 )  Exterior E :  y/e++cn. 

X-xB xs -x  

x - x s  

(2) GUY, G: y = O(E),  -, ++m.  

(3) Wake W :  y = O(e) ,  - -++a. 

e e 

e 

(4) BOW B: x - x B ,  y = O(e).  

(5)  Stern 8:  x -x s ,  y = O(e) .  
I n  each region, as G --f 00 we make a separate asymptotic expansion of the form 

$ = $O+$I+qb+. . . ,  (A 1)  

$h = $q+q5p+$@+ ... . 

where, when necessary, we identify the region by a superscript, e.g. the exterior 
expansion is 

(A 2) 

The subscript indicates an ordering with respect to E .  I n  principle, we only need 
require that #n+l = 0(q5,~) as E+ 0;  however, in the present problem it soon becomes 
clear that  all expansions are power series in e, i.e. that  q5fl = O(E"). It is not necessary 
that all terms be present, and in particular we shall find that q5f = #f = 0. Note that 
we are making the reasonable implicit assumption that in no region do flow quantities 
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tend to infinity as e+ 0. We also assume that time differentiation does not alter the 
order of magnitude of any term. We now consider each region in turn. 

( I )  Exterior region 

The full Laplace equation (2.4) holds for all terms of the exterior expansion, as does 
the boundary condition (2.5) a t  infinity. The boundary y = f ( x ,  t )  = O(s)  shrinks to the 
wall y = 0,, as seen by an exterior observer, and the boundary condition (2.7)yields 
limiting boundary conditions on y = 0, for successive terms, namely 

etc. These hold for xB < x < xs with f = fu, and for x > x, with f = fn,; for x < xB all 
terms satisfy $EL! = 0 on y = 0. 

The boundary-value problem for $f is homogeneous, and has the unique solution 
$f = 0, unless there is any contribution from singular points a t  (xB, 0 ) )  (xs, 0 )  that 
model the edge regions, as seen by an exterior observer. Such a contribution can only 
occur if there are apparent singularities, notably sources or sinks, of O(1) strength 
as e-+ 0. Since the gap within which any such flux must squeeze is O(s) ,  this can only 
happen if the edge and gap velocities are O(c-l) and thus tend to  infinity as E +  0, a 
possibility we have excluded. Hence we assume that any apparent singularities a t  
(xB, 0), (x,, 0 )  are a t  most O(s) ,  and affect only $?. 

Thus $$ satisfies uniformly-homogeneous boundary conditions for Laplace’s 
equation, and hence vanishes identically. The exterior flow is therefore O(s ) ,  and its 
leading term satisfies 

gAx9 0,) = f&,  t ) ,  (A 4) 

together with suitable matching conditions describing possible O(E)  singularities a t  
the bow (xB,  0 ) .  Although in principle a singularity is also feasible a t  the stern (x,, 0)) 
this is ultimately excluded by the Kutta or smooth detachment condition. 

(2) Gap region 
I n  the gap (and wake) region, the y co-ordinate must be stretched relative to  the x 
co-ordinate. I n  effect, we have y = O(E) ,  a/2y = O(e-l), and there is an O($) imbalance 
between the two terms in the Laplace equation (2.4). Thus, the successive terms in 
the expansion for $ satisfy 

$EL! = 0,  $EL! = 0,  $EL! = -&x, (A 5) 

etc. The general solutions of (A 5) contain terms linear in y that must vanish, since 
$& = 0 a t  y = 0 for all n. Thus we may take as our solutions 

$(y = $ f ( x ,  t ) ,  q5F = # ( x ,  t ) ,  $g = $ q ( X ,  0, t )  - *y2$&(x, t ) ,  (A 6) 
etc. 

The limiting forms of the boundary condition (2 .7)  on y = f = f L ( x ,  t )  are 

and 
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The first two of these conditions (A 7) are already satisfied, and the last is satisfied 
if and only if q5 = q5f(x, t )  satisfies the one-dimensional continuity equation (3.4). 

(3) Wake region 
There is no formal mathematical difference between the wake region and the gap 
region, except for the fact that the bounding surface y = f = f w ( x ,  t )  is unknown. Thus 
the same solutions (A 6) apply, and (3.4) is still a necessary condition on q5 = @(x, t ) .  

The additional condition that must be considered in order to determine fw is the 
jump condition (2.10) across the vortex sheet y = frv(x, t ) .  The left-hand side of this 
equation must be evaluated using the exterior-region expansion, and the right-hand 
side using the wake-region expansion. Thus we have 

q5i”,(., o+, t )  + O(@)  = m x ,  t )  + g(q5Ek t))’+ O(4.  (A 7 )  

Since the left-hand side of (A 7) is O ( E )  and the terms on the right-hand side are O( l ) ,  
necessarily 4 = @(x,t) satisfies (3.12) for x > x,(t). 

(4) Bow region 

It is convenient in discussing this flow region to adopt a special stretched co-ordinate 
set (X, Y )  defined by 

where 

is the gap size a t  the bow. Since IC and y are scaled in the same way, the full Laplace 
equation (2.4) applies with respect to ( X ,  Y ) ,  to each term in the bow-region expansion, 
and each term satisfies $,By(X, 0) = 0. 

The boundary condition as Y -+ co corresponds to matching with the singular limit 
of the exterior flow as (x, y) -f (xB, 0) .  Although we have so far left that question open, 
it is intuitively clear that the character of this singularity will be that of a sink of some 
O(e) strength to be determined. It is convenient to write its strength as 2uB(t) .  h,(t), 
where uB(t) is an O(1) velocity to be determined. Thus the boundary condition a t  
infinity can be written 

11: = ZB(t) + hB(t)  X ,  y = hB(t)  Y ,  (A 8) 

(A 9) hB(t)  = fL(X,(t), t )  = f v ( x o ( t ) ,  t )  = O ( 4  

U B  hB q5 -+ - 7 [log ( 2 2  + y2)41, y -f 00, 

and successive terms in the bow-region expansion satisfy: 

$O”-+O, Y+m; 

(A 10) 

An additional boundary condition a t  ‘infinity’ is that which applies as X-++co, 
0 c Y c 1, corresponding to matching with the gap region, in its limit as x-+zB+, 
namely 

q5+#f(xB,t)+ (x-x,) .~oC,(ICB,t)+~P(S,, t)f0(€2).  

Hence successive terms in the bow-region series must satisfy 
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generates zero net velocity, $o”,-+ 0 as as X -+ co. This means that in this limit, 
X -+ CQ, whereas 

4fx  -+ . &(XB(t), t ) .  (A 13) 

The final boundary condition is on the leading-edge tip of the airfoil y = f ( x , t ) ,  
f = fL and f u ,  x+xB. We assume in this appendix that both f L  and f v  are analytic 
near x = xu, with fL (xB , t )  = f v ( xB , t ) .  This means that the airfoil possesses a sharp 
leading edge; the case when the leading edge is blunt is treated in Tuck (1979) .  Now 
as x+xB, 

or 
Y = f -+ hB(t) + ( x  - XB(t))f,(XB(t), t )  + . . * 

Y = 1 + X f X  + O ( E 2 )  

and hence the limiting bow-region airfoil is the semi-infinite flat plate Y = 1 t 0, 
X > 0. The limiting boundary conditions on that plate follow from (2 .7)  as 

f j fu = 0, 

@Y = f x  . (X4,”,),, (A 14) 
et>c. 

The boundary-value problem for the leading term @ is homogeneous except for the 
X -+ + CQ limit in (A 1 1)  and the problem €or the derivative q5f‘ is entirely homogeneous. 
Thus necessarily # tx (X ,  Y )  = 0. But then (A 10) guarantees that # t ( X ,  Y )  = 0, and 
hence (A 11)  indicates that  @(xB(t) ,  t )  = 0, which is equation (3.7) of the text. The 
residual O(c)  boundary-value problem €or 4; can now be solved easily and completely 
by a Schwartz-Christoffel conformal mapping, as in Widnall & Barrows (1970) ,  but 
as we have no use for such a solution it is not presented here. We note in passing, 
however, that the problem €or $? is quasi-steady, the time co-ordinate playing tl 

parametric role only, and that continuity implies that  uB = #fx(xB(t), t ) .  

(5) Stern region 

If we adopt a similar set of scaled co-ordinates (X, Y ) ,  such that 

x = x,(t) +h,(t) x, y = h,(t) Y ,  (A 15)  

where h,(t) = fL(xs(t) ,  t )  = f v (xs ( t ) ,  t )  is the stern gap size, again all P,(X, Y )  satisfy 
Laplace’s equation in Y > 0, and Pnu = 0 on Y = 0. Matching with the gap-region 
flow requires that 

and 
&-+ 4oc(%(t)> t ) ,  +:x+ 0, 

4; -+ QP(x,(t), t )  + h, $&s(tL t )  * x (A 16) 

as X -+ - 00, 0 < Y < 1. Similarly, matching with the wake-region flow requires that 

&+ 4r(&(tL t ) ,  Q!x+ 0, 

$; -+ S Y ( X , ( t ) ,  t )  + h, &Z(xs(t), t )  . x, 
and 

as X-++CQ, Y = O(1). 

similar to  those for the bow region, i.e. 

(A 17) 

The airfoil boundary conditions when f ( x ,  t )  is analytic near x = xs(t) are also 
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$& = 0, $b = f z  * (X&x)x, (A 18) 

on Y = 1 _+ 0, X < 0. Again, non-analytic f is considered in Tuck (1979). 
Instead of matching with the exterior region, as in the bow case, now we must 

find the limiting form of the jump condition (2.10) in the stern region, evaluating the 
left-hand side using limits as (x, y) --f (x,, 0) of exterior-region quantities. There is now 
no reason to suspect singularities, since the Kutta condition demands smooth stern 
detachment. Therefore we may assume that the leading-order exterior term @ is an 
analytic O ( s )  quantity near (zs, O ) ,  and hence so is the left-hand side of (2.10). I n  the 
( X ,  Y )  co-ordinate system, this means that 

on Y = fw(x,t)/h,(t) = F ( X , t ) ,  say. I n  particular, in the limit as c+0, the leading- 
order 0( 1) term $ = $: must generate zero velocity on the wake boundary, i.e. 

$ & + $ & = 0  on Y = F .  

Once again the derivative $& satisfies homogeneous boundary conditions and hence 
must vanish identically. However, we can now a t  most assert that $: is a funct'ion of 
time alone, and can no longer demand that it vanish. Thus we have 

where 

Thus, we have proved continuity of gap and wake potentials across the trailing edge. 
I n  order to verify the form of the Kutta condition (3.12), we must proceed to the next 
term 4:. 

Now, on substituting 4 = $t(t) + @ ( X ,  Y ,  t )  into (A l o ) ,  we obtain as the limiting 
boundary condition for 4: = O(E), the result 

Physically, this solution simply corresponds to  a uniform stream of magnitude u,(t), 
the wake boundary being a plane projection of the trailing edge of the airfoil. 

We have now shown that both the velocity potential $,, and its x derivative $or are 
continuous across the trailing edge from gap G to wake W .  I n  effect, the stern edge 



Wings in extreme ground effect 47 

region S is superfluous. Since #$ satisfies (3.12),  this is sufficient already to confirm 
validity of (3.12) as the trailing edge condition for $#, but in fact, (A 26) is a specific 
confirniation of that fact, since 

= $o"s3i;.+#gct. 

#ft + 8(9fz)z = 0 

Thus (A 26) states directly that 

a t  x = xs(t) ,  which is the required trailing edge condition (3.12) for the gap potential 
4 = #oC(x,t). 
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